Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways.

نویسندگان

  • Shoken Honsho
  • Susumu Nishikawa
  • Katsuya Amano
  • Kan Zen
  • Yasushi Adachi
  • Eigo Kishita
  • Akihiro Matsui
  • Asako Katsume
  • Shinichiro Yamaguchi
  • Kenichiro Nishikawa
  • Kikuo Isoda
  • David W H Riches
  • Satoaki Matoba
  • Mitsuhiko Okigaki
  • Hiroaki Matsubara
چکیده

RATIONALE It has been reported that interleukin (IL)-1 is associated with pathological cardiac remodeling and LV dilatation, whereas IL-1beta has also been shown to induce cardiomyocyte hypertrophy. Thus, the role of IL-1 in the heart remains to be determined. OBJECTIVE We studied the role of hypertrophy signal-mediated IL-1beta/insulin-like growth factor (IGF)-1 production in regulating the progression from compensative pressure-mediated hypertrophy to heart failure. METHODS AND RESULTS Pressure overload was performed by aortic banding in IL-1beta-deficient mice. Primarily cultured cardiac fibroblasts (CFs) and cardiac myocytes (CMs) were exposed to cyclic stretch. Heart weight, myocyte size, and left ventricular ejection fraction were significantly lower in IL-1beta-deficient mice (20%, 23% and 27%, respectively) than in the wild type 30 days after aortic banding, whereas interstitial fibrosis was markedly augmented. DNA microarray analysis revealed that IGF-1 mRNA level was markedly (approximately 50%) decreased in the IL-1beta-deficient hypertrophied heart. Stretch of CFs, rather than CMs, abundantly induced the generation of IL-1beta and IGF-1, whereas such IGF-1 induction was markedly decreased in IL-1beta-deficient CFs. IL-1beta released by stretch is at a low level unable to induce IL-6 but sufficient to stimulate IGF-1 production. Promoter analysis showed that stretch-mediated IL-1beta activates JAK/STAT to transcriptionally regulate the IGF-1 gene. IL-1beta deficiency markedly increased c-Jun N-terminal kinase (JNK) and caspase-3 activities and enhanced myocyte apoptosis and fibrosis, whereas replacement of IGF-1 or JNK inhibitor restored them. CONCLUSIONS We demonstrate for the first time that pressure-mediated hypertrophy and mechanical stretch generates a subinflammatory low level of IL-1beta, which constitutively causes IGF-1 production to maintain adaptable compensation hypertrophy and inhibit interstitial fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways.

Cardiac hypertrophy is a well known response to increased hemodynamic load. Mechanical stress is considered to be the trigger inducing a growth response in the overloaded myocardium. Furthermore, mechanical stress induces the release of growth-promoting factors, such as angiotensin II, endothelin-1, and transforming growth factor-beta, which provide a second line of growth induction. In this re...

متن کامل

High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway

Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week t...

متن کامل

The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling.

Although signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulati...

متن کامل

Stretch-Induced Hypertrophy Activates NFkB-Mediated VEGF Secretion in Adult Cardiomyocytes

Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor...

متن کامل

Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes.

In patients with congestive heart failure, high serum levels of the proinflammatory cytokine interleukin (IL)-18 were reported. A positive correlation was described between serum IL-18 levels and the disease severity. IL-18 has also been shown to induce atrial natriuretic factor (ANF) gene expression in adult cardiomyocytes. Because re-expression of the fetal gene ANF is mostly associated with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 105 11  شماره 

صفحات  -

تاریخ انتشار 2009